Hyperspectral Image Classification Using Ensemble Transfer Learning
نویسندگان
چکیده
منابع مشابه
Active Learning for Hyperspectral Image Classification
Obtaining labeled data for supervised classification of remotely sensed imagery is expensive and time consuming. Further, manual selection of the training set is often subjective and tends to induce redundancy into the supervised classifier, thus considerably slowing the training phase. Active learning (AL) integrates data acquisition with the classifier design by ranking the unlabeled data to ...
متن کاملDeep Transfer Learning Ensemble for Classification
Transfer learning algorithms typically assume that the training data and the test data come from different distribution. It is better at adapting to learn new tasks and concepts more quickly and accurately by exploiting previously gained knowledge. Deep Transfer Learning (DTL) emerged as a new paradigm in transfer learning in which a deep model offer greater flexibility in extracting high-level...
متن کاملHyperspectral image classification via contextual deep learning
Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorit...
متن کاملGenre-based image classification using ensemble learning for online flyers
This paper presents an image classification model developed to classify images embedded in commercial real estate flyers. It is a component in a larger, multimodal system which uses texts as well as images in the flyers to automatically classify them by the property types. The role of the image classifier in the system is to provide the genres of the embedded images (map, schematic drawing, aer...
متن کاملHyperspectral Image Classification Using Graph Clustering Methods
Hyperspectral imagery is a challenging modality due to the dimension of the pixels which can range from hundreds to over a thousand frequencies depending on the sensor. Most methods in the literature reduce the dimension of the data using a method such as principal component analysis, however this procedure can lose information. More recently methods have been developed to address classificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1916/1/012082